
 
Guidelines for the Use of Pair Programming in a Freshman 

Programming Class 
 
 

Jennifer Bevan, Linda Werner, Charlie McDowell 
Department of Computer Science 

University of California at Santa Cruz 
{jbevan,linda,charlie}@soe.ucsc.edu 

Abstract 
   Undergraduate freshman programming classes are conventionally organized such that 
individual students complete a set of concept-specific and unrelated programming 
assignments.  This structure does not prepare students for future collaborative efforts or for 
the future use of software engineering practices.  The addition of pair programming into a 
freshman programming  class at the University of California  at Santa Cruz (UCSC) showed  
similar benefits to similar studies on upper-division software classes[1,2], and is expected to 
show an improvement in students' willingness and ability to participate in complex, 
collaborative software engineering assignments in later classes.  This paper describes the 
implementation of the pair programming experiment at UCSC, discusses some of the issues 
that compromised the effectiveness of certain pairs, and provides implementation guidelines 
for avoiding such issues in other classes. 
 
 
1. Introduction 
 

Conventional undergraduate freshman programming classes do not prepare students 
for either collaborative efforts or software engineering practices.  These classes 
generally require that individual students complete a set of concept-specific 
assignments that do not build upon each other.  The use of such assignments does not 
teach students the importance of good design and maintenance practices; students do 
not have to cope with problems within the previous week's assignment[3].  This 
problem is difficult to overcome because freshman classes are mainly comprised of 
students who have little or no programming experience.  The necessary small and 
concept-specific assignments do not easily support the overhead of a software 
engineering methodology, and most students do not have the requisite background to 
write even small unit tests.  On the other hand, the issue of preparedness for later 
collaborative efforts can be addressed by the addition of pair programming into the 
class structure. 

Pair programming in freshman classes does not inherently suffer from unique 
hardships uncommon to pair programming in other university and industry settings.  
The most common issues that can detract from the pair programming experience are 
grounded either in attitude conflicts or scheduling conflicts[2,4].  Attitude conflicts can 
be found in both industry and university settings, and can be addressed through 
management buy-in and professional conduct[5].  Scheduling conflicts are more 
strongly felt in the university: industry can encourage compatible employee schedules 
while universities do not restrict course selection beyond a limit in the total number of 
units taken per term[6]. 



Pair programming offers a method of breaking the pattern of conditioning students to 
work alone.  Although researchers have agreed that student programmers are 
conditioned to equate communication and sharing with cheating[1,4], the conditioning 
is widespread in more than just the computer science community.  Throughout junior 
high and high school, students are conditioned that working together is the same as 
cheating.  While an assessment of individual competency is necessary for professional 
or academic certification, many teachers and administrators view collaboration as an 
unwieldy grading problem, and prefer to avoid it entirely.  In recent years, however, 
encouraging studies on the effectiveness of pair programming in junior and senior level 
undergraduate classes have been accomplished[1,2].  By introducing pair programming 
into undergraduate freshman classes, this pattern can be broken earlier in the 
programmers' development.  

An ongoing NSF-funded study, conducted at the University of California at Santa 
Cruz (UCSC), restructured the freshman programming course to use pair programming 
as a means of determining both its effectiveness as a teaching technique and its effect 
on student retention within the computer science program.  The preliminary results, 
which contrast the performance of successful pairs to individual students, make a 
significant case for pair programming[7].  This paper describes the implementation of 
the restructured freshman programming class and discusses the issues that caused 
problems among the students.  A set of implementation guidelines is then provided for 
instructors interested in adopting pair programming within their own classrooms.  
 
2. Background 

 
When pair programming, two developers alternate between the roles of driver and 

reviewer.  The driver issues all keyboard and mouse input within the development 
environment.  The reviewer observes the input, mentally compares the actual 
functionality of the new code with the expected functionality, and maintains active 
communication with the driver regarding the correctness and appropriateness of the 
code.   

Pair programming inherently incorporates basic design and review phases in the 
development process.  The programmers must communicate about possible approaches 
in order to discuss appropriateness during development.  Both members review the 
other's input, a process that increases the developers' ability to perform effective 
reviews.   

The first paper (McDowell et. al.) from our study gives a more thorough description 
of the evolution and practice of pair programming[7].   
 
3. Implementation details 

 
During the 2000-2001 academic year, four lecture sections of the introductory 

programming class took part in our study.  The Fall and Winter quarter classes all used 
pair programming while the Spring class did not.  The Fall and Spring classes were 
taught by the same instructor. Each class completed 9 assignments in 10 weeks.  Four 
of the assignments were practice problems that did not directly contribute to a student's 
grade.  The nth-week assignments for each class generally focused on the same 
programming topic, with some variation in difficulty between instructors.  An entrance 



and an exit survey were performed in each class; previous programming experience and 
strength in mathematics were among the data solicited.   

Students in the Spring class, which did not use pair programming, were required to 
complete time logs for each assignment, indicating total work time, satisfaction with 
their solution, and satisfaction with the experience of solving the problem.  The 
students in the paired classes were required to complete similar time logs that also 
indicated their satisfaction with the experience of working with a partner and the times 
spent driving, reviewing, and working alone.   

For the Fall and Winter classes, the pair programming requirement was that no less 
than 75% of the total time spent by a student on an assignment was to be physically 
spent with their partner.  Students were to alternate between driving and reviewing at 
intervals of no more than 1 hour.  These students were also given copies of Williams 
and Kessler's “kindergarten” paper[4], and links to other pair programming papers were 
placed on those class web sites.  Students were re-paired only if the pair had 
insurmountable scheduling difficulties or if one partner repeatedly did not come to 
scheduled meetings.  If requested, students were allowed to work alone, but they were 
required to fill out the same time logs as the other students.

Pairing was based on student requests: each student turned in a list of three other 
students in the order of pairing preference.  In the Fall quarter, the pairing scheme 
required that paired students be enrolled in the same section.  This was not the case 
with the Winter quarter classes; in those classes the students' preferences were turned 
into a weighed graph, where edge weights were a linear function of two people's 
preference to work with each other.  The edges were ordered by weight and the pairs 
selected from this ordered list.  Students not selected by this process were randomly 
paired with other such students.  The pairing process resulted in nearly the same 
number of women paired with other women as were paired with men, which was 
important for our study.  Programming experience and grade point average were not 
taken into account during pairing.
 
4. Sources of difficulties 

 
Three of the four classes in this study were taught by different instructors, with the 

help of eight different graduate student teaching assistants (TAs).  In each case, the 
instructor gave the lectures while the TAs oversaw the computer lab sections.  
Variances in the implementation of pair programming between the different classes, and 
the effects of these variances on the stability of the student pairs, were obtained through 
TA interviews, optional comments from the required student logs, and direct student 
email. 

Several pair-related issues were discovered to be common amongst all of the paired 
classes in the study, each of which related to how well the students worked together.  
The two most common sources of intra-pair stress were a significant disparity between 
the experience levels of the students and difficulties with scheduling or reliability.  The 
students' methods of dealing with these stresses sometimes resulted in unintentional 
cheating, due to confusion regarding the relative importances of required pairing and 
honesty. 
 
 
 



4.1. Effects of class structure 
 
Most of the class-level differences resulted from variances in the enforcement and 

reinforcement of the pair programming requirements.  The instructors did not uniformly 
emphasize what was expected of the paired students during lectures, which resulted in 
several cases of misunderstandings during the first several weeks.  For example, some 
pairs were found to be partitioning the problems and working on those partitions 
separately, instead of using pair programming.  Others were e-mailing the code back 
and forth, incrementally completing the assignments separately.  The extent to which 
TAs could identify such behavior was tied to the instructor's section policy: mandatory 
lab sections increased the TA's ability to verify that the paired students were following 
the pair programming requirements.  Given that paired students were not necessarily in 
the same lab section, the TAs were not instructed to restrict access to the computers if 
both partners were not present.  Therefore, partitioning or alternating development 
strategies were not always actively discouraged. 
 
4.2. Student scheduling and reliability problems 

 
Students were encouraged to alert the researchers conducting the study if their 

partner was repeatedly unreliable or if both partners had insurmountable scheduling 
conflicts.  Unfortunately, some pairs tried to overcome scheduling conflicts for several 
weeks before reporting the problem, which made re-pairing much more difficult.  An 
average of less than 5% of the pairs in each class reported such issues and were re-
paired if possible. 

Optional comments on the logs led to several discoveries about scheduling conflicts 
and unreliable partners that were not directly reported. One of the more surprising 
discoveries was the willingness of students to submit an assignment with both partners' 
names attached, even if one partner had not contributed at all.  An investigation 
revealed that the students in question believed that it was more important that they 
appear to be following the pairing requirements than it was to be honest about the 
division of labor. 

 
4.3. Differing levels of experience between partners 

 
The introductory programming class is a required course in the computer science 

program at UCSC, with a pre-requisite of pre-calculus but no prior programming.  This 
led to a wide variance in experience levels among students.  The portion of the classes 
that did not self-pair were randomly paired without knowledge of relative experience 
levels.  While our study indicates that both members of a functional pair benefitted 
from pair programming, the probability of the pair being functional was lessened by a 
significant disparity in experience levels.  The more experienced students were 
frequently unwilling to explain the relevant concepts to the other, or to wait for the 
other to understand the material.  Several students described having a less adept partner 
as a “waste of their time”, and would simply write the entire program alone and submit 
it as a combined effort.  Others stated that because their programming style suits them, 
and because working with another would force them to change their style, they would 
not participate in a paired process.  Just under 2% of the pairs were discovered to have 
this type of problem to such a degree that they were eventually re-paired. 



 
4.4. Student understanding and buy-in 

 
The submitted student logs identified several pairs that were not conforming to the 

pair programming guidelines due to a lack of understanding or commitment.  Some 
pairs required personal, in-depth descriptions of what pair programming was and what 
was to be accomplished by the members of a pair.  Several students equated “working 
alone” with “driving”, and logged double their actual time spent on the assignment.  
Several pairs showed an unacceptable imbalance of driving and reviewing times.  In 
one such case, a student was extremely uncomfortable at the keyboard.  In others, one 
partner admitted authorship of most or all of the code submitted thus far.  Some 
students thought that they were in compliance but were not; others recognized that they 
were not following the pair programming guidelines but did not care.  None of these 
issues forced a pair to be split up, but the efficiency of the pair was reduced until the 
problem was worked out.  This type of problem can be difficult to detect without the 
active involvement of the TAs during the computer labs; the student logs are not 
sufficient to identify every occurrence of this behavior. 
 
5. Implementation guidelines 

 
Our study has indicated that pair programming improves a student's performance on 

programming assignments in an introductory programming class[7].  Even so, the 
structure of the class can fail to encourage and enforce the pair programming 
environment.  The following guidelines address the implementation issues described 
above, and should be used as a framework by instructors interested in adopting pair 
programming. 
 

1. Pair within sections.  Pairing within sections helps TAs identify students who are not 
conforming to the pair programming guidelines because the missing partner is known 
to be in the same section.  During the scheduled lab sections in the first week of class, 
the TA should oversee introductory activities that allow students to find a compatible 
partner within their section.  These activities should candidly address scheduling 
compatability and student concerns about working with a partner.  Discussion can be 
facilitated by the application and analysis of personality profiling tests, given the 
caveat that the results should not determine the pairings.  Potential pairs can perform 
a “test run” of the partnership by jointly solving small jigsaw puzzles or other similar 
games that are not independently solvable.  Although odd-numbered enrollments are 
impossible to avoid, some students will have a more flexible schedule than others, 
and could switch sections if necessary.  This extra effort during the first week of 
sections will help to provide the “jelling” time necessary for successful pairing[8]. 

2. Pair (somewhat) by skill level.  Although skill level is not as crucial a pairing 
parameter as co-enrollment in a given section, pairing with regard for skill level can 
avoid some compatibility problems.  Freshman undergraduates do not necessarily 
believe that the axiom “you always learn more when you teach somebody else” 
applies to them.  The resulting impatience between partners is detrimental to the 
effectiveness of a pair.  This guideline is targeted at classes that introduce pairing to 
students.  Students who state that they are unwilling to work with a less experienced 
student can be paired at a similar skill level, thereby increasing the stability of that 



pair.  Once students are comfortable with the idea of pairing, they are more likely to 
be more open-minded when working with partners that are not as well-matched[2,8]. 

3. Make sections mandatory.  Even if partners are enrolled in the same lab section, 
partner reliability can still be a problem.  Mandatory lab sections ensure that some 
minimal amount of time is spent working on the assignment together.  The instructor 
should define a set of acceptable excuses, such as illness or having already completed 
the assignment, that will excuse a pair from the section.  If possible, both partners 
should inform the section TA if they wish to invoke one of these excuses. 

4. Assignments as a function of section time.  First-year programming classes generally 
focus on a few basic concepts per assignment.  Some assignments, however, can 
require a lot of other work that extends the expected time-to-completion far beyond 
the total time of the scheduled lab sections.  If instructors create such assignments, 
paired students are more likely to encounter scheduling difficulties that make it 
impossible to conform to the pair programming guidelines.  Instructors need to tailor 
the expected length of the assignments such that a reasonable percentage of the class 
can finish within the scheduled section time.  This practice improves the ability of the 
students to maintain the pair programming process and sacrifices no coverage of 
concepts. 

5. Institute a coding standard.  Experienced programmers generally have both a 
personal coding style and the ability to conform to any required coding standard.  
Alternately, less-experienced programmers tend to view their personal coding style as 
“right”, and anything different as “wrong”.  Within a pair programming class, an 
instructor-selected coding standard can smooth out such differences between partners 
because neither individual can dominate the coding style.  The resultant decrease in 
friction increases the effectiveness of the pair. 

6. Create a pairing-oriented culture.  Classes with pair programming issues integrated 
into their structure can improve the collaborative process without increasing the level 
of oversight required by the TAs or professor.  For example, scheduling conflicts will 
happen, and therefore assignment submission and grading policies need to 
accommodate this.  Suppose that a pair was not able to finish debugging a program 
together.  An official method of separately turning in individually debugged program 
will reduce the chance that one partner will finish the program and submit it using 
both partners' names. Forcing a student to depend upon an unreliable partner in 
order to follow both grading requirements and pairing guidelines can create a conflict 
between honesty and academic compliance.  Some students have grown up in an 
academic tradition that emphasizes academic compliance above all else.  In order to 
counteract such training, the TAs or the instructor should, on a weekly basis, discuss 
some of the ideals behind pair programming with the students.  Discussion on how 
the implementation of pair programming in the class differs from those ideals should 
be encouraged.  The open discussion of issues such as collective ownership of code, 
maintenance goals, and industry expectation does not have to take up a lot of class 
time and can foster a culture within the class that supports the goals of pair 
programming.    

Ideally, the extent to which students attempt to follow the pair programming 
guidelines should affect their final grades in the class.  Unfortunately, determining 
where pairs went wrong would require more time than instructors and TAs usually 
have.  The existence of a class culture that encourages pair programming will help 
students realize when they are drifting away from the pair programming guidelines, 
and we hope will help them identify and self-correct the problem.  



6. Conclusions 
 
Pair programming surveys have shown that experienced pairs will frequently work 

alone on rote or simplistic implementation details[4,8].  For most freshman 
undergraduates, however, there are no rote details: everything is new and difficult.  
Within a paired curriculum, the pair-learning, pair-relaying, and pair-think behaviors 
discussed by Williams “create a unique educational capability, whereby the pairs are 
endlessly learning from each other” that can be beneficial for these freshmen[2].  We 
emphasize, however, that the implementation of pairing within the freshman classroom 
requires careful attention to detail; behaviors that are not common in industry or even 
upper-division classes can undermine the stability of a given pair.  In this setting, the 
most critical aspect of creating an effective pair programming implementation is to 
minimize the potential scheduling conflicts between partners.  The additional support of 
a culture that emphasizes cooperation, mutual respect, and shared responsibility paves 
the way for partners to work out attitude-based problems.   

Even though the percentage of pairs that were reassigned due to the problems described 
was quite low, an effort should still be made to reduce this percentage further.  The guidelines 
suggested in this paper can be used by other instructors as a means of more effectively 
structuring their freshman classes to prepare their students for future collaborative work.  As 
more studies are completed, these guidelines should, of course, be refined.  
 
7. Future Work 

 
The ongoing project at UCSC will monitor the students from the studied freshman 

classes for the remainder of their undergraduate career.  Data such as the types of 
classes chosen, performance in such classes, and attitudes about computer science and 
software engineering issues will be collected.  We hope to determine the effects of pair 
programming on retention percentages within the computer science field, personal 
software processes, and long-term interest in software engineering.   
 
8. Acknowledgements 

 
Thanks to Dr. Heather Bullock, Dr. Julian Fernald, Wendy R. Williams, M.S, and 

Tristan Thomte, from the Psychology Department at UCSC, for assistance in creating 
the surveys, data collection, and analysis, to Dr. Alex Pang and Dr. Scott Brandt of the 
Computer Science Department at UCSC for participating in the pair programming 
study, to the anonymous reviewers for CSEET 2002, and to the National Science 
Foundation for the project funding (NSF EIA-0089989, “Retaining women in computer 
science: Impact of pair programming”).  Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation. 

 
9. References 
 
[1] L. Williams, “But, isn’t that cheating? [collaborative programming],” FIE’99 Frontiers in Education.  29th 

Annual Frontiers in Education Conference, vol. 2, pp. 12B9/26-27, Nov. 1999.  
[2] L. Williams, “Integrating pair programming into a software development process,”  Proceedings 14th 

Conference on Software Engineering Education and Training, pp. 27-36, Feb. 2001. 



[3] R. Kessler and L. Williams, “If this is what it’s really like, maybe I better major in English: integrating 
realism into a sophomore software engineering course,”  FIE’99 Frontiers in Education.  29th Annual 
Frontiers in Education Conference., vol. 1, pp. 12A4/12-16, Nov. 1999. 

[4] L. Williams and R. Kessler, “All I really need to know about pair programming I learned in kindergarten,”  
Communications of the ACM, vol. 43, pp. 108-114, May 2000. 

[5] J. Haungs, “Pair programming on the C3 project,”  Computer, vol. 34, pp. 118-119, Feb. 2001. 
[6] J. Kivi, D. Haydon, J. Hayes, R. Schneider, and G. Succi, “Extreme programming: a university team design 

experience,”  2000 Canadian Conference on Electrical and Computer Engineering., vol. 2, pp. 816-820, Mar. 
2000. 

[7] C. McDowell, H. Bullock, J. Fernald, and L. Werner, “The effects of pair-programming on performance in an 
introductory programming course,”  Accepted by SIGCSE 2002. 

[8] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the case for pair programming,”  
IEEE Software, vol. 17, pp. 19-25, July 2000. 

 
 


