Contributions of Object Oriented Software Design
towards Limiting the Problems Caused by a Lack of
Software Engineering.

Jennifer Bevan

May 14, 2002

Abstract

The Radio Science Validation and Processing (RSVP) software suite was created to re-
place an outdated and disorganized set of legacy software. The development process applied
no formal software engineering methods, but did employ an object-oriented approach during
the design of the initial phase. The modules developed during this initial phase were later
recognized to be the most stable and easily maintained portion of the resulting software
suite. This paper discusses some of the problems frequently caused by a lack of software
engineering, and examines how an object-oriented foundation mitigated the effects of these
problems on the overall quality of the RSVP project.

Contents

1 Introduction

2 Development Overview

3 Common Problems Involved with Informal Product Development
4 Software Engineering Issues Addressed by Object-Oriented Design

5 Object-Oriented Design Principles and RSVP
5.1 Requirements Engineering Lo
5.2 Design L e
5.3 Implementation

6 Object-Oriented Induced Quality Aspects of RSVP
6.1 Simple Modification to Include New Formats
6.2 Localization of Code Modification Effects

7 Conclusions
List of Figures

List of Tables

A~ W

ot Ot

1 Introduction

While the benefits of software engineering are no longer considered to be strictly hypothetical
quality improvements [1], the consistant use of software engineering principles is still far from
widespread. While software engineering baccalaureate programs worldwide have increased
from none in 1994 to more than 18 in 1999 [2], object-oriented languages have generally
become the rule rather than the exception in the required programming courses for computer
science baccalaureate degrees. This education is creating a growing pool of programmers in
the workforce who are already familiar with the basics of object-oriented design, yet who
are not, familiar with software engineering principles. Given the obsession with lowering a
product’s time-to-market (TTM), if it seems possible to create that product using familiar
techniques, commercial developers will use what they know. New learning generally occurs
only when a sufficient benefit is clearly shown to and approved by project management.

However, the use of object-oriented principles in software design is certainly not mutually
exclusive with the use of software engineering principles, and in fact helps to ensure that
some basic software engineering issues are addressed. This report identifies common prob-
lems incurred by the lack of software engineering, discusses the aspects of object-oriented
design which overlap software engineering concerns, and examines how an object-oriented
foundation mitigated the effects of these problems on the overall quality of a specific scientific
data processing tool.

2 Development Overview

The development of the Radio Science Validation and Processing (RSVP) software suite
was divided into three phases, the first of which allowed the extraction of science data
from multiple input formats. The legacy software which mathematically manipulated the
data was updated later, during the second and third phases; the requirement that the first
phase produce output that was acceptable input to the legacy modules restricted the early
objectification of the project as a whole. While later versions of RSVP started to incorporate
object-oriented principles in these later modules, only the “core code” developed in the first
phase can currently be considered object oriented.

In 1994, there were 6 input formats that the software was required to accept. By 1999,
this number had grown to 10. Within these formats, data of the same data type (such
as received frequency, time-stamp, or other format elements) were not always represented
in identical units or encodings. The RSVP core code uses a generic Record class which
holds all of the common data across the different formats, as well as data search functions.
Format-specific classes inherit from this Record class and add the necessary data types and
flags to correctly control the processing control and output. Virtual functions in the Record
class lead to format-specific subroutines in the appropriate class, subroutines which generally
consist of bit-level unpacking of data formats. The core code also consists of an i07ype class
which provides a base class to multiple media-specific classes; The half-inch magnetic tape
media used by the legacy code was discontinued the same year RSVP was commissioned, and
those data files were archived onto Exabytes and later, onto CD/ROMs. While the io Type
class was being created to handle both types of high-capacity magnetic media, additional

type-specific classes were added to handle byte streams and arrays. After the core code was
initially released, additional format- or media- specific classes only entailed creating a new
class and updating the case/switch statements which took the user’s type specifications and
created the appropriate instantiations.

3 Common Problems Involved with Informal Product
Development

The purpose of software engineering is essentially to provide methods by which the proba-
bility of creating the right product, in the best possible way, is maximized. Checkpoints are
inserted into well-defined developmental stages which attempt to discover bugs and other
“features” as early as possible, thereby reducing the number of problems found after product
deployment. Software engineering methods encourage the development of software that is
easily upgraded or otherwise maintained. In other words, the goal is to produce software
with as much thoughtful planning and execution as is commonly applied in other engineering
disciplines [3].

Some common problems which frequently result from a lack of such formal development
techniques include an incomplete or incorrect understanding of the product requirements and
designs that, even if formally established, are not flexible in the direction of the most likely
upgrade path. Additionally, implementations are created that require system-wide changes
for maintenance or upgrade modifications; these changes are frequently of the type that cause
unintended side effects in unexpected parts of the code. While software engineering does not
guarantee an error-free product development cycle, it certainly does provide a framework
which aids developers in avoiding these problems.

4 Software Engineering Issues Addressed by Object-
Oriented Design

Object-oriented design, while not a process that can be applied to a product’s entire life-cycle,
certainly addresses some of the same concerns as software engineering. The re-classification
of a problem domain into objects enforces a fairly in-depth examination of the requirements
of a project. The object-oriented design state creates a well-defined model for functional and
object-based upgrade paths. Object-oriented implementation is more tightly connected with
a verified design, and the software engineering metrics of high cohesion and low coupling
are analogous to “good” object-oriented design techniques: these techniques promote the
localization of the scope of bug fixes.

5 Object-Oriented Design Principles and RSVP

The object-oriented approach in the development of RSVP addressed several software engi-
neering aspects. Each of these aspects, and the extent to which this approach acheived the

goals of the aspects, is discussed in turn.

5.1 Requirements Engineering

Given the dynamic nature of the set of input formats that RSVP would be required to
process, the creation of an object-based representation ensured that the relationship between
the data-processing software and the input data was thoroughly examined. This process
uncovered the fact that the same nominal data type across different formats might have
different encodings, use different units of measurement, or allow a different range of valid
data values. It also identified exactly which data types were required by the processing, in
what format they had to be presented to the processing software, and in which data formats
this data would appear. Links between the input format and the allowable set of processing
functions could then be created without modification of actual data processing code, which
for the majority of the development process remained legacy code. Data value or format
modification could be done by the format-specific subclass before the extracted data were
presented to the rest of the code.

5.2 Design

After the realization that all of the input formats could be represented as a data block nested
in three layers of variable-length header and trailer block pairs, the Record class was created
as the “parent” of a number of format-specific subclasses. This decision was to specifically
ease the expected workload of adding a new class every one or two years. The i0Type class
was created for the same purpose (the use of new media was an expected upgrade path),
and used the same parent-child relationship. The inheritance depth of RSVP is only one,
between these parents and their specific subclasses: the project was not objectified to the
extent that an encompassing DataProcessing class was created.

5.3 Implementation

The Record class, as the central access point for all input data, publicly owns the most
common data types (e.g. spacecraft identifiers, antenna and ground system identifiers, time-
stamps). Format-specific data types, where either the data type itself was not common or
where the representation was not format-unique, were isolated in format-specific subclasses.
The Record class provided the means to traverse the data records and the procedures for to
output the data to the scientific processing programs, while the format-specific subclasses
manipulated the data types to provide a uniform representation and generic valid-data flags.
The addition of new input format subclasses do not affect any existing code, with the
exception of a single localized modification to the Record class initialization procedure. Be-
cause any instance of a Record has the same interface, the high-level code to manipulate
data records did not need to change over the later, updated, versions of RSVP. Similarly,
new subclasses of 10 Type did not affect the high-level code, for exactly the same reasons.

6 Object-Oriented Induced Quality Aspects of RSVP

The development of RSVP is currently considered complete, with respect to the original
project goals. While it is certainly not a perfect product, especially with respect to mathe-
matical problems in specific scientific data processing stages, the overall stability and flexi-
bility of the software is very satisfactory. New input media and data formats are not a cause
for concern to the scientists using the product: they have worked through several format
additions and found no adverse effects unintentionally introduced. The “core code” has not
changed beyond the addition of initialization routines for new subclasses. Modifications to
the data-extraction code does not affect the data-processing code, and vice-versa. While
there are certainly some quality aspects which a formal software engineering process would
have improved, those aspects affected by the object-oriented design process are recognized
by the users as of high quality.

Given that there are very few specific, universally applicable standards for software qual-
ity, the best source of quality information is from the users. The quality of RSVP is gen-
erally divided into three categories by its users. The first is the ability to quickly adapt to
new formats with respect to simple data-extraction and reformatting issues. The second is
the ability to protect working portions of the project through numerous maintenance-level
changes. The third is mathematical correctness. The first two issues were directly affected
by the use of object-oriented design in the initial phase of development. The third issue,
on the other hand, was not covered by object-oriented design techniques; the legacy code
was converted in later, non-object-oriented development phases, and due to a lack of formal
verification and validation methods, suffered during the translation.

6.1 Simple Modification to Include New Formats

The simple, yet very structured design of single-point data access via the Record class al-
lows for new formats to be added easily and quickly. The initial step, that of creating the
format-specific subclass, generally took only a few hours after the new format documenta-
tion was provided to the developer. If verification of the new subclass with test or actual
data uncovered any implementation-level errors, they could generally be fixed in a matter
of minutes or hours. Because this stage of the data processing generally involves only data
extraction and necessary modifications to conform to the uniform data type representations,
all such errors could only occur within the subclass definition. This localization of potential
errors greatly increased the speed with which bugs could be found and fixed.

6.2 Localization of Code Modification Effects

Because RSVP was developed in a three planned phases, changes to each phase were incor-
porated with the expected work of the next phase. The deployment environment was limited
to a “released” version and a “beta” version, which was essentially the developer’s copy with
minor privilege restrictions. Scientists who had requested a modification could, if necessary,
only wait for as long as it took the developer to implement that single modification in the
beta tree, then run that version to see if the modification made a difference to the processed

data. During these well-defined yet very informal maintenance phases, it was crucial that a
modification not be able to affect calculations in unintended parts of the code.

The object-oriented structure of the code, which inherently promotes the low coupling and
high cohesion principles, increased the quality of RSVP in this respect. Modifications to the
transformation routines of format-specific data types were forcibly restricted affecting only
that subclass. Modifications to one portion of the data processing code, while not created
under an object-oriented paradigm, were nonetheless called on object-oriented data. This
shielding allowed the scientists to get the earliest possible returns on modification requests

without worry that a given change could affect the data outside the modification “effect
field”.

7 Conclusions

The creation of RSVP was the work of a single programmer who, like many in the work-
force now, had neither heard of software engineering nor understood its principles and yet
was considered a “good” programmer. As is typical in situations where there is a push to
produce working code in a short time frame (in this case due to the unreliable nature of the
hardware on which the legacy code could run), the programmer applied the principles she
did understand, those of object-oriented design. While the overall quality and acceptance of
the RSVP package by its users is considered good, certain important aspects were overlooked
due to the total absense of formal software engineering techniques. However, the quality of
RSVP is not accidentally, nor coincidentally, good. The object-oriented design used in the
initial phase, where the legacy code had no impact on the new code except in determining
output formats, created the most stable and reliable portion of the entire RSVP package.
While this design process did not address all of the issues which should have been addressed,
the quality of RSVP is almost certainly much higher than it would have been without the
benefit of an object-oriented foundation.

References

[1] M. Paulk, B. Curtis, M. Chrissis, and C. Weber, “Capability maturity model for soft-
ware.,” Software Engineering, pp. 427-438, 1997.

[2] D. Hew, E. Sinderson, and L. Spirkovska, “The state of software engineering: Body of
knowledge, education, certification, and licensing..” Final Project, Software Engineering
Graduate Course, Nov. 1999.

(3] F. Bauer, “Foreword: Software engineering-a european perspective.,” Software Engineer-
g, p- 79, 1993.

